Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 14: 1157179, 2023.
Article in English | MEDLINE | ID: covidwho-2296687

ABSTRACT

Introduction: Although many studies have demonstrated the existing neurological symptoms in COVID-19 patients, the mechanisms are not clear until now. This study aimed to figure out the critical molecular and immune infiltration situations in the brain of elderly COVID-19 patients. Methods: GSE188847 was used for the differential analysis, WGCNA, and immune infiltration analysis. We also performed GO, KEGG, GSEA, and GSVA for the enrich analysis. Results: 266 DEGs, obtained from the brain samples of COVID-19 and non-COVID-19 patients whose ages were over 70 years old, were identified. GO and KEGG analysis revealed the enrichment in synapse and neuroactive ligand-receptor interaction in COVID-19 patients. Further analysis found that asthma and immune system signal pathways were significant changes based on GSEA and GSVA. Immune infiltration analysis demonstrated the imbalance of CD8+ T cells, neutrophils, and HLA. The MEpurple module genes were the most significantly different relative to COVID-19. Finally, RPS29, S100A10, and TIMP1 were the critical genes attributed to the progress of brain damage. Conclusion: RPS29, S100A10, and TIMP1 were the critical genes in the brain pathology of COVID-19 in elderly patients. Our research has revealed a new mechanism and a potential therapeutic target.


Subject(s)
Asthma , Brain Injuries , COVID-19 , Aged , Humans , COVID-19/genetics , Brain , Genes, Regulator
2.
Inflamm Res ; 71(3): 369-376, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712206

ABSTRACT

BACKGROUND: Excessive inflammation has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). In the current study, the involvement of S100 calcium binding protein S100A4, S100A9, and S100A10 in the inflammatory settings of COVID-19 patients were evaluated. METHODS: Peripheral blood samples were obtained from 65 COVID-19 subjects and 50 healthy controls. From the blood samples, RNA was extracted and cDNA was synthesized, and then the mRNA expression levels of S100A4, S100A9, and S100A10 were measured by Real-time PCR. RESULTS: The mRNA expression of S100A4 (fold change [FC] = 1.45, P = 0.0011), S100A9 (FC = 1.47, P = 0.0013), and S100A10 (FC = 1.35, P = 0.0053) was significantly upregulated in COVID-19 patients than controls. The mRNA expression of S100A4 (FC = 1.43, P = 0.0071), (FC = 1.66, P = 0.0001), and S100A10 (FC = 1.63, P = 0.0003) was significantly upregulated in the severe COVID-19 subjects than mild-to-moderate subjects. There was a significant positive correlation between mRNA expression of S100A4 (ρ = 0.49, P = 0.030), S100A9 (ρ = 0.55, P = 0.009), and S100A10 (ρ = 0.39, P = 0.040) and D-dimer in the COVID-19 patients. The AUC for S100A4, S100A9, and S100A10 mRNAs were 0.79 (95% CI 0.66-0.92, P = 0.004), 0.80 (95% CI 0.67-0.93, P = 0.002), and 0.71 (95% CI 0.56-0.85, P = 0.010), respectively. CONCLUSIONS: S100A4, S100A9, and S100A10 play a role in the inflammatory conditions in COVID-19 patients and have potential in prognosis of severe form of COVID-19. Targeting these modules, hopefully, might confer a therapeutic tool in preventing sever symptoms in the COVID-19 patients.


Subject(s)
Annexin A2/genetics , COVID-19/genetics , Calgranulin B/genetics , S100 Calcium-Binding Protein A4/genetics , S100 Proteins/genetics , SARS-CoV-2 , Adult , Aged , COVID-19/blood , Female , Humans , Male , Middle Aged , Prognosis , RNA, Messenger/blood , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL